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Abstract

In the past, we have observed several large blackouts, i.e. loss of power to large areas. It has been noted by
several researchers that these large blackouts are a result of a cascade of failures of various components. As a power
grid is made up of several thousands or even millions of components (relays, breakers, transformers, etc.), it is
quite plausible that a few of these components do not perform their function as desired. Their failure/misbehavior
puts additional burden on the working components causing them to misbehave, and thus leading to a cascade of
failures.

The complexity of the entire power grid makes it difficult to model each and every individual component and
study the stability of the entire system. For this reason, it is often the case that abstract models of the working
of the power grid are constructed and then analyzed. These models need to be computationally tractable while
serving as a reasonable model for the entire system. In this work, we construct one such model for the power grid,
and analyze it.

1 Introduction

We model the power grid as a network of nodes with edges. The edges represent generators serving a load; an
edge between two nodes represents a logical connection between the nodes, representing an agreement between the
nodes to share each others’ loads in case of one of the nodes failing. The event of a random number of components
of the power grid failing is modeled as a random disturbance causing some of the nodes in the network to fail. The
loads at these nodes is shared by their neighbors. It could so happen that this additional burden causes some of
these neighboring nodes to fail, causing an additional burden on the remaining nodes, and so on. We study the
robustness of such system, i.e., what disturbance levels the system can accept before a failing node (or a few failing
nodes) would result in the failure of all the components in the system resulting in a large blackout.

2 System Model

Our system model consists of a graph G(V,E), with a node v ∈ V representing a generator. Associated with each
node v is a number Lv(n) representing the load demand at that node at time n. Also, associated with each node
is a capacity Lmax. A node is said to be alive as long as the load demand at that node is within its capacity, i.e.,
as long as Lv(n) < Lmax that node is alive. If the load demand at a node exceeds its capacity, then it fails. The
edges on the network, E, represent a link between the generators with the following interpretation: If a node fails,
then the load served by that node is equally shared by all the nodes connected to it. Consider the 5 nodes, nodes
A through E, in Figure 1. The nodes represent generators located at various distant locations. The yellow regions
around each of the nodes represent the area of coverage of these generators. Depending on the area of coverage, the
‘steady state’ load at different generators could be different. Each generator is assumed to generate sufficient power
to feed all the customers’ demands.

However, occasionally, a few of these generators fail. This could either be because of failure of the generator itself,
or because the load increases to a level greater than the generation capacity of the generator, or because of a natural
calamity taking down the power lines which connect the generator to the power grid. Any of these events would
result in a blackout to all the customers being served by the failing generator. To bolster the power grid, one could
conceive of agreements between different nodes (probably belonging to different utility companies). Links are formed
between nodes with the interpretation that the load at a failing node is equally distributed among its neighbors.

We start out by considering the case when every node in the network is assumed to have the same maximum
capacity Lmax of one unit. The load at each node is assumed to be a constant number a0 ∈ (0, 1). Hence,
Lv(0) ∼ δ(l − a0),∀v ∈ V , i.e., if Lv(0) were to be thought of as a random variable, it would have a distribution
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Figure 1: Generators, in blue, located at different geographical locations, with yellow regions representing the area
of coverage of each of these generators.

δ(l−a0). The assumptions about the initial distribution are not required for our analysis, but the resulting equations
are easier to analyze. We will consider other initial distributions later.

At time 0, a disturbance Dv(0) is added to node v. As discussed before, a variety of events could trigger the
chain of cascading failures. We model this initial trigger as an abrupt increase in the consumers’ load demand.
The disturbance Dv(0) is modeled as a random variable with distribution Exponential(dm), with a mean value of
dm < 1. The disturbances at various nodes are independent of each other. As a result of this disturbance, the load
at node v is now Lv(0) + Dv(0). At time 1, all those nodes for which Lv(0) + Dv(0) > 1 fail. All the neighboring
alive nodes share the load of the failing nodes. If node i fails, and suppose it is connected to nodes r and s, which
have not yet failed, then each of these two nodes share the load of node i, that is, the load at node r at time 1 is
Lr(1) = Lr(0)+Dr(0)+ Li(0)+Di(0)

2 and the load at node s at time 1 is Ls(1) = Ls(0)+Ds(0)+ Li(0)+Di(0)
2 . Now, if

Lr(1) = Lr(0) + Dr(0) + Li(0)+Di(0)
2 > 1, then node r fails, and all of its load is shared among the nodes connected

to it, and so on. Note that if no nodes fail at time n, no other nodes will fail subsequently.

Large Fully Connected Networks: We now limit our attention to large fully connected networks. The fully
connected assumption means that every node in the network has agreed to share the load of every other node in the
event of a failure. From a robustness point of view, intuitively, fully connected graphs should be the most resilient
to disturbances. This intuition was confirmed partly by the following simulation. Refer Appendix A for details on
the simulation. We considered random graphs with varying probability of the presence of an edge. Random graphs
are graphs in which any two nodes are connected with a certain probability. The presence or the absence of an edge
between two nodes in the graph is independent of the presence or absence of any other edge. As described in the
previous section, we ran the simulation and computed the fraction of the simulations in which there was no outage1.
The results are shown in Figure 2. It is evident from the plot that when there are more number of connections
between the nodes, there is a smaller probability that there is any outage in the region. Also, when the total number
of nodes in the network is large, the improvements in going from weakly connected to fully connected are higher.
We hence assume that most networks designed should be fully connected. Recall that by fully connected, we do
not necessarily mean that there is a physical wired connection between any two generators, but only an agreement
between the nodes that they would share each others’ loads in the event of a failure.

Note that we say the results in Figure 2 only partially confirm that fully connected graphs are the best in terms
of providing resilience to disturbances because, the network resilience could be measured using different metrics.
The metric we used to make that claim is the probability that there are no outages. We could also measure this
resilience using another metric, on an average, the fraction of the population which goes into an outage as a result of

1A slight deviation from the model described earlier is that for this simulation we assumed that the initial distribution of loads is
Uniform[0, 1] instead of δ(l − a).
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Figure 2: The probability that there is no outage increases with the connectivity in the network.

the disturbance. Figure 3 shows the fraction of population which goes into an outage in the event of a disturbance.
The reason for this behavior is the following. The fully connectedness of the graph ensures the following: Every
node is an immediate neighbor of every other node. Hence, if there are nodes which have survived the disturbance,
then they will supply power to all the regions being served by the failed nodes, resulting in no outage in any of the
regions. However, if all the nodes end up failing, then the entire region goes into an outage. When the graph is fully
connected, either the entire region survives the disturbance, or all of it goes into an outage. If the graph were not
fully connected, when a few of the nodes fail, it could divide up the region into islands of disconnected nodes which
could individually survive or fail.

This behavior is seen in Figure 4, where we plot the results of individual experiments. When there are few edges
in the graph, there are many ‘small’ outages, when the edges are many, there are few, but ‘large’ outages. It is hence
not very clear if fully connectedness of the graph is indeed the best to have. From a customer’s point of view, large
graphs are indeed the best as they have the least probability of an outage. A customer is not bothered if there is
an outage only in his locality or the entire region. From the utility company’s point of view, if the graph is fully
connected, there is a higher chance that the entire region goes into an outage. In such an event, the time required by
the utility company to fix all the generators (by replacing the defective components, re-setting the circuit breakers,
etc.) will be larger compared to fixing only a few nodes. To come up with possibly other metrics of resilience and to
decide on what degree of connectivity is best is a study in itself (we have considered only random graphs, perhaps a
structured graph with low degree of connectivity could offer best of both extremes), and we explore this question no
further. We just concentrate on fully connected graphs.

By a large graph, we mean that we will study the behavior of network in the limit that the number of nodes goes
to infinity. This simplifies the analysis greatly. Also, as we shall see, the behavior of a network with finite, but large
number of nodes is well approximated by the behavior of the large network.

Main Result of the paper: For a fully connected large graph, we will show that there is a threshold value dcritical

with the property that, when dm < dcritical, the network survives the disturbance with probability 1, i.e., no region
goes in an outage; and when dm > dcritical, all the nodes in the network fail with probability 1 leading to a complete
outage.

3 Related Works

Different works have considered different failure models and have analyzed them. Some of these works specifically
study cascading failures in power grids whereas others study more general networks, e.g. social networks, Internet,
food chains, etc.. In most of these networks, there is some notion of a failure of a node, a computer connected to
others being infected by a virus, people in social networks framing opinions on whom to vote for, etc.. Some of the
failure models which are studied are:
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Figure 3: The fraction of the population which goes into an outage, averaged over all the simulations.

• Each failing nodes increases the load at every other node uniformly: [1] Like in the system model
described above, there are nodes which form the network, each with a tolerance level of lmax. However, in
this model, the underlying topology of the nodes is ignored. The initial disturbance causes a few of the nodes
to fail. When any node fails, the load at every other active node is uniformly increased by a constant load
p. In this work, the authors study the fraction of the nodes which survive a disturbance, and show that their
distribution follows a quasi-binomial distribution.

• Each failing node takes down with it a random number of nodes: [2] In this model, the network
topology is again ignored. Initially each node is active. Then one of them is assumed to fail. This failing node
results in the failure of M1 nodes, where M1 is a random variable distributed according to a p.m.f. PF (·). Each
of these failed nodes cause a further failure of a certain nodes. At stage i, if Mi nodes have failed, then, the
total number of failed nodes at stage Mi+1 is

Mi+1 = M1
i+1 + M2

i+1 + . . .MMi
i+1,

where Mk
i+1 is the number of nodes which fail as a result of the failure of the kth failure at time i. Mk

i+1, k =
1, 2, . . . ,Mi are all assumed i.i.d. according to the same p.m.f. PF (·). The authors study the distribution of∑∞

k=0 Mk. The behavior of M is governed by the mean of the number of failures which result from the failure
of a node, i.e., λ =

∑∞
f=1 fPF (f). When λ < 1, Pr(M < ∞) = 1. When λ > 1, Pr(M < ∞) = 0. In the case

when λ = 1, the authors show that the total number of failed nodes follows a power law, i.e., Pr(M = r) ∝ r−
3
2 .

• Nodes which fail if a fraction of their neighbors fail : [3] In this model, each node is assumed to be in
one of the two states, active or failed. Each node fails if a fraction φ of its neighbors fail. The authors study the
behavior of “random networks”. The network is constructed out of n nodes, where each node has k neighbors,
where k is an integer-valued random variable with distribution PK , and mean z � n. All the nodes in the
network are initially in active state. At time 1, a fraction Φ0 � 1 of the nodes change their state. The system
then evolves as discussed above. The authors relate this problem to percolation theory, and find the stability
region, i.e., the pairs (z, φ) for which there is no cascading failure. This is done for the case when all the nodes
in the system have the same threshold φ.

• Drop in efficiency of a network because of an imbalance in flow distribution: [4, 5] In this model,
all the edges in the graphs have weights associated with them. The weight represents the cost of using that
link. Furthermore, each node also has a weight associated with it, representing its capacity. For example,
the nodes could represent routers in a network, the weight of a router represents the maximum number of
packets it can process per second. The links represent the topology of the network and the link weights are
the costs associated with transmitting a packet on that link. In this model, every node sends packets to every
other node in the network at a constant rate of one packet per second. The packets are routed through the
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Figure 4: Results of individual experiments plotted for the case when there are 50 nodes in the network, and dm=0.1.

path with the smallest cost. If the path includes multiple links, the cost of the path is the sum of the costs
along individual links. The load li(t) on node i at time t is the total number of flows through it, i.e., the total
number of most efficient paths through node i. The capacity of node i is Ci = αli(0), α ≥ 1. The system is
stable at time 0 because the total flow through each node is less than its capacity. At time 1, one randomly
chosen node is removed from the network. All the flows through that node are now re-routed. This is done by
re-calculating the most efficient paths for these flows. This might lead to an overload at a few of the nodes.
When this happens, the weights of all the edges emerging from an overloaded node are increased, i.e., the cost
of routing a packet through an overloaded node is increased. When the costs associated with the links change,
the most-efficient paths are re-calculated. This re-routing will cause overload at other nodes, leading to an
increase in the cost of routing packets through these nodes, followed by a re-calculation of the most efficient
path, and so on. The efficiency of the network at each time is the total cost incurred in routing all the flows.
Note that in this model, only a single node fails at time 0. After that, no further nodes fail, however, the
efficiency of the network keeps decreasing because of increasing link costs. A cascading failure occurs when
there is a substantial drop in the efficiency of the network. The authors study two graphs, Erdos-Renyi random
graphs, and scale-free networks, and show in both the cases that a single node failing can lead to a cascading
loss in the efficiency of the network when α, the excess capacity of a node, is close to one.

In a similar work, [6], the authors consider source nodes, destination nodes, and routing nodes. The links
between them represent power lines with associated capacities. The source nodes have a weight representing
maximum generation capacity. The destination nodes have a weight representing their power demand. Routing
of power from the source nodes to the destination nodes is done so as to meet the constraints on maximum
power that can be transmitted along each power line, maximum generation capacity of the generators, and
the demand at the loads. Then, the demand of each load is perturbed. Now, the paths are re-calculated,
and overloaded lines are cut off. This leads to a re-calculation of the best path. This process is continued
iteratively. If all the edges leading to a destination node are cut off, then that node is in outage. The authors
use simulation to study how many nodes go in outage.

4 Analysis of failures in the network

For the case of large fully connected graphs, we will introduce some additional notation. We will define L0 to
be a random variable whose distribution is the same as the distribution of a node which has not failed in stage 0,
i.e. L0 ∼ δ(l− a0). More generally, Ln is a random variable with a distribution same as the distribution of the load
at all the nodes which are alive at stage n. We will show later that the load at all surviving nodes at any stage is
identically distributed. Also, define Dn, n ≥ 1 to be the ‘additional disturbance’ at stage n ≥ 1. We will make this
definition more concrete later on. Define D0 to be a random variable with distribution Exponential(dm).

The initial load at each node at stage 0 is assumed to have the same distribution, of that of L0, and the added
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disturbance at each node is also independent and identically distributed according with the distribution of D0.
Hence, the distribution of the initial load plus the disturbance at each node is also independent and identically
distributed with the distribution of L0 + D0. Denote by p0, probability that a node fails at the end of stage 0,
i.e. p0 = Pr(L0 + D0 > 1). Denote by N0, the number of nodes which fail at stage 0. N0 is a random number:
N0 ∼ Binomial(N, p0), where N is the total number of nodes (we are interested in studying the behavior of the
system when N is large). Let k1, k2, . . . , kN0 be the indices of nodes which have failed in stage 0. Let j1, j2, . . . , jN−N0

be the indices of the nodes which have not failed at stage 0. Then,

Lji(1) = Lji(0) +
1

N −N0
(Lk1(0) + Lk2(0) + . . . + LkN0

(0)), i ∈ {1, 2, . . . , N −N0}.

Knowing the distributions of all the various random variables involved in the above expression, we can find the
distribution of Lji(1). The distributions of the various random variables involved in the above expression can be
written as follows:

1. Lji
(0) : fLji

(0)(x) = fL0+D0(x|L0 +D0 < 1).

2. Lki(0) : fLki
(0)(x) = fL0+D0(x|L0 +D0 ≥ 1).

3. N0 : N0 ∼ Binomial(N, p0).

Define µ0
.= E(Lki(0)) =

∫∞
x=1

xfL0+D0(x|L0 + D0 ≥ 1)dx. We can then express the distribution of SN0 =
1

N−N0
(Lk1(0)+Lk2(0)+ . . .+LkN0

(0)) as follows. We are interested in the distribution in the limit that the number
of nodes, N goes to infinity.

lim
N→∞

SN0 = lim
N→∞

N0/N

1−N0/N

Lk1(0) + Lk2(0) + . . . + LkN0
(0)

N0
.

Lemma 4.1 If µ0 < ∞, limN→∞ SN0 = p0
1−p0

µ0

Proof Refer Appendix B for a rigorous proof. Informally, when N is large, the strong law of large numbers dictates
that limN→∞N0/N = p0. This is because N0 can be thought to be a sum of i.i.d. Bernoulli random variables with
mean p0, and the empirical mean of a large number of i.i.d. random variables behaves like the statistical mean. Next,
when N is large, N0 can also be shown to be very large, in which case, the second term in the expression also behaves
like the statistical mean of the random variables involved.

The fact that SN0 converges to a constant number, and not a random variable is important. This is because
the set of random variables {Lji(1)} continue to be independent random variables, which would not be the case
otherwise2. This simplifies the analysis greatly. Moreover, the set of random variables {Lji(1)} are all identically
distributed.

Define D1 = p0
1−p0

µ0. Define L1 to be a random variable with the distribution of all the nodes which are alive at
the end of stage 0, i.e., L1 ∼ fLji

(0)(l|Lji(0) < 1). The nodes which die at the start of stage 1 are those nodes for
which L1 +D1 > 1. Define p1

.= Pr(L1 +D1 > 1). Because we started out with a large number of nodes, the number
of nodes which are alive at the start of stage 1 is also large. Similar to the case before, a few nodes die at the end of
stage 1, and their load is redistributed among those which are alive. Define µ1

.=
∫∞

x=1
xfL1+D1(x|L1 + D1 ≥ 1)dx.

It can be shown, by similar arguments as before, that the total re-distributed load is equal to D2
.= p1

1−p1
µ1.

We can continue this analysis to find the distributions of L2,L3,L4 . . . and D2,D3,D4 . . ., along with p2, p3, p4, . . ..
At each stage, pn denotes the probability that a node which is alive at stage n will die. We say that the cascade
of failures stops if limn→∞ pn = 0, else we will say that the cascade continues indefinitely and will result in all the
nodes failing.

In the remaining portion of this section, we will compute these distributions and values for our specific choice
of the initial distribution of loads and distribution of the initial disturbance. Restating our choices, we will assume
that L0 ∼ δ(l − a0), and D0 ∼ Exponential(dm).

The distribution of L0 +D0 is:

fL0+D0(x) =

{
0 x < a

1
dm

e−
x−a0

dm a0 ≤ x

2If variables X1 and X2 are independent, then X1 + S and X2 + S are independent if S is a constant, but are not if S is a random
variable.
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p0 can then be calculated as:

p0 = Pr(L0 +D0 ≥ 1)

= e−
1−a0
dm

Let L1 be the random variable with the same distribution as that of the loads at nodes which have not failed at
the end of stage 0. The distribution of L1, which is also the distribution of Lji(0) is:

L1 ∼ fL0+D0(x|L0 +D0 < 1) =


0 x < a0

1

1−e
− 1−a0

dm

1
dm

e−
x−a0

dm a0 ≤ x < 1

0 x ≥ 1

The distribution of load at a node which has failed at the end of stage 0, namely the load at node Lki(0) is:

fL0+D0(x|L0 +D0 ≥ 1) =
1

dm
e−

x−1
dm , x ≥ 1

As discussed before, because we are interested in the case when the number of nodes is large, the total re-distributed
load as a result of failures is a constant number. The total redistributed load at stage 1 is D1 = p0

1−p0
µ0, where

µ0 = E(Lki(0)) = 1 + dm.
The distribution of all the nodes which have survived the initial distribution is the distribution of the random

variable L1 +D1, which is,

fL1+D1(x) = fL0+D0+D1(x|L0 +D0 < 1) =
1

1− p0

1
dm

e−
x−a0−D1

dm , a0 +D1 ≤ x < 1 +D1.

From the equation above, it is seen clearly that a small fraction of the total loads might have a load exceeding
their capacity, and hence will fail. Let L2 be the random variable with the same distribution as that of the loads at
nodes which have not failed at the end of stage 1. The distribution of L2 is,

L2 ∼ fL0+D0+D1(x|L0 +D0 < 1,L0 +D0 +D1 < 1)

=
1

1− e−
1−a0−D1

dm

1
dm

e−
x−a0−D1

dm , a0 +D1 ≤ x < 1.

Compare this to the distribution of L1, they are similar. We will shortly develop a set of recursive equations which
describe the distributions of all the subsequent random variables.

The probability that a node which has survived the initial disturbance will fail at the end of stage 0 because the
re-distributed load caused its load to go beyond its capacity can be calculated as:

p1 =
∫ x+D1

x=1

fL0+D0+D1(x|L0 +D0 < 1)dx

=
e−

1−a0
dm (e

D1
dm − 1)

1− e−
1−a0
dm

.

The mean of the loads at the nodes which fail at the end of first stage is, hence,

µ1 =
∫ x+D1

x=1

xfL0+D0+D1(x|L0 +D0 < 1,L0 +D0 +D1 > 1)dx

= 1 + dm − D1

e
D1
dm − 1

,

and the total redistributed load at the end of stage 1 is D2
.= p1

1−p1
µ1.

The evolution of this system can be written in the form of a set of recursive equations:

1. Initialize p0 = e−
1−a0
dm ,D1 = p0

1−p0
(1 + dm), a1 = a0, p1 = e

− 1−a1
dm

1−e
− 1−a1

dm

(e
D1
dm − 1).

2. For n from 2 to Niteration, where Niteration is a large number, do:

If (Dn−1 > (1− an−1)) and (an−1 < 1), break. Else,
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(a) an = an−1 +Dn−1.

(b) µn−1 = 1 + dm − Dn−1

e
Dn−1

dm −1

.

(c) Dn = pn−1
1−pn−1

µn−1.

(d) pn = e
− 1−an

dm

1−e
− 1−an

dm

(e
Dn
dm − 1).

We are interested in limn→∞ pn, or equivalently limn→∞ an. If limn→∞ pn = 0, or equivalently, if limn→∞ an < 1,
then we can conclude that the system survives the outage, else, it would mean that the whole system goes into an
outage. We wish to solve these recursive equations listed above in order to find the limits of these sequences, however,
they are not tractable. We hence resort to simulations to verify the conditions under which the sequences converge.
In Figure 5, we plot the sequence {an} for different values of dm, for the initial value a0 = 0.8. It is clearly seen
that there is a critical value dcritical = 0.048 below which the sequence always converges to a number less than 1,
implying that the cascade has subsided. When dm > dcritical, the sequence converges to 1, implying that the load
at all the generators is greater than 1, and consequently a complete outage. In Figure 6, we plot the sequence {pn}.
As said before, the sequence either converges to 0, when dm < dcritical, or to 1 when dm > dcritical.

Figure 5: Plot of an vs n for different values of dm in the range of 0.001 to 0.07 in increments of 0.001. Note that
when dm ≤ 0.048, {an}s converge to a value less than 1.

The theory developed so far can be used to gain further insight into the network resilience of large fully connected
graphs. In Figure 7, we plot, in blue, the value of dcritical for different values of a0. We also plot, in red, the excess
capacity at each node, which is just 1 − a0. For large values of a0, dcritical is about an order smaller than the
disturbance the network was provisioned to handle.

5 Further Extensions

We can perform a similar analysis of systems with different initial load distributions. Suppose that instead of all
the nodes in the system having the same initial distribution a0 at time 0, suppose that a fraction pa of the total
nodes had a load of a0, and the remaining fraction, pb = 1− pa, had a load of b0, then the recursive set of equations
which describe the system would be:

1. Initialize p0 = pae−
1−a0
dm +pbe

− 1−b0
dm ,D1 = p0

1−p0
(1+dm), a1 = a0, b1 = b0, p1 = pae

− 1−a1
dm +pbe

− 1−b1
dm

1−
„

pae
− 1−a1

dm +pbe
− 1−b1

dm

« (e D1
dm − 1

)
.

2. For n from 2 to Niteration, where Niteration is a large number, do:

If (Dn−1 < (1− bn−1)) and (bn−1 < 1):
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Figure 6: Plot of pn vs n for different values of dm in the range of 0.001 to 0.07 in increments of 0.001.

(a) an = an−1 +Dn−1, bn = bn−1 +Dn−1.

(b) µn−1 = 1 + dm − Dn−1

e
Dn−1

dm −1

.

(c) Dn = pn−1
1−pn−1

µn−1.

(d) pn = pae
− 1−an

dm +pbe
− 1−bn

dm

1−
„

pae
− 1−an

dm +pbe
− 1−bn

dm

« (eDn
dm − 1

)
.

Else if ((1− an−1) > Dn−1 ≥ (1− bn−1)) and (bn−1 < 1):

(a) an = an−1 +Dn−1, bn = 1.

(b) p̃ = pa

(
e−

1−an−1−Dn−1
dm − e−

1−an−1
dm

)
+ pb

(
1− e−

1−bn−1
dm

)
µn−1 = pae−

1−an
d (1+dm−(1+Dn−1+dm)e

−
Dn−1

dm )+pb(bn−1+Dn−1+dm−(1+Dn−1+dm)e−
1−bn−1

d )
p̃

(c) Dn = pn−1
1−pn−1

µn−1.

(d) pn = 1− pa(1−e
− 1−an

dm )

1−(pae
−

1−an−1
dm +pb)

.

Else if (Dn−1 < (1− an−1)) and (an−1 < 1) and (bn−1 == 1),

(a) an = an−1 +Dn−1.

(b) µn−1 = 1 + dm − Dn−1

e
Dn−1

dm −1

.

(c) Dn = pn−1
1−pn−1

µn−1.

(d) pn = e
− 1−an

dm

1−e
− 1−an

dm

(e
Dn
dm − 1).

Else stop.

In Figure 8, we plot the series {pn} for different values of dm. For this simulation, we choose a0 = 0.5, b0 =
0.9, pa = 0.25, pb = 0.75. The mean value of the initial load is 0.25 ∗ 0.5 + 0.75 ∗ 0.9 = 0.8. There is again a critical
value dcritical = 0.02 for the mean of the initial disturbance below which the cascading subsides, and above which
all the nodes fail with probability 1. Compare this to the results of the previous section where we considered the
case when all the nodes in the network had the same initial load of 0.8. In that case, dcritical was 0.049, more than
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Figure 7: Plot of dcritical vs a0.

double of what it is now. This leads to an interesting question, what configuration of initial loads at the generators
is best in terms of network resilience. Is it best to have all the nodes share equally the initial load?

To verify this, we varied a0 in the range (0, 0.8), and b0 in the range (0.8, 1), and varied pa in a way such that we
keep the mean paa0 + (1− pa)b0 constant at 0.8. For each pair of (a0, b0), we found the critical value. In Figure 9,
we plot dcritical. This simulation confirms our intuition that it is best to run all the generators at the same load.

A Description of the simulation

We consider a network with N nodes. We generate a random graph to connect these nodes. Any two nodes
are connected with probability p, where p ∈ [0, 1] is a parameter we vary. The presence or absence of an edge is
independent of the presence or absence of any other edge. Let A = [aij ]N×N be the adjacency matrix, where aij = aji

is 1 with probability p, 0 with probability 1-p. Define B to be the normalized adjacency matrix, defined as follows:
bij = aij/

∑N
i=1 aij . The reason for defining this matrix is that the term bij now represents the fraction of power

transferred from node i to node j in the event that node i fails. Note that the transpose of the normalized adjacency
matrix, BT , is a stochastic matrix, i.e. all the entries of the matrix are non-negative, and the sum of elements along
any row add up to 1.

The load of node i is initialized to li distributed i.i.d. Unif([0, 1]). A disturbance di is added to every node, an
exponentially distributed random variable, di distributed i.i.d Exponential(dmean). Let l(0) = [li + di]N×1 denote
the load vector at time 0.

With this notation, to simulate a cascade, the following algorithm is used:

1. Initialize t=0.

2. Find the indices and number of nodes which fail in the current stage. Let i1, i2, . . . , iK denote the indices of
these nodes.

3. Update A by setting aikij ,j, k ∈ {1, 2, . . . ,K} to 0. Normalize A to update B.

4. l(t + 1) = l(t) + B× [0, . . . , 0, li1 , 0, . . . , 0, li2 , . . . , liK
, 0, . . . , 0]T .

5. Set lik
(t + 1), k ∈ {1, 2, . . . ,K} to 0.

6. Update A by setting aikj and ajik
, j ∈ {1, 2, . . . , N}, k ∈ {1, 2, . . . ,K} to 0. Normalize A to update B.

7. Find the indices and number of nodes which fail in the next stage. If no new nodes fail, i.e., l(t + 1) < 1
(element-wise comparison), then increment t and continue, else, increment t and go to step 2.

8. Suppose at stage T , no nodes fail, compute f = sum(l(T ))/sum(l(0)). Note that T ≤ N .

10



Figure 8: Plot of pn vs n when the initial distribution of the loads follows a bimodal distribution.

9. Repeat the simulation with different realizations of the random graph and different realizations of the initial
load and initial disturbance. If f1, f2, . . . , fM are the fractions computed from simulations 1, 2, . . . ,M , then
1 − mean(fi) gives the fraction of the population which goes into an outage, and is plotted in Figure 3.
mean(I(fi=1)), where I(·) is the indicator function3, gives the probability that that there is no outage in the
system, and is plotted in Figure 2. The results of the individual experiment, 1− fi are plotted in Figure 4.

B Proof of lemma 4.1

Let Xi be the indicator function of whether node i is dead. So, X1, X2, . . . , XN are a set of i.i.d. Bernoulli
random variables, taking the value 0 with probability p0 and 1 with probability 1 − p0. Then N0 =

∑N
i=1 Xi is a

Binomial random variable with parameters N and p0. By the strong law of large numbers,

lim
N→∞

1
N

N∑
i=1

Xi
a.s.= p0

and so,

lim
N→∞

N0
N

1− N0
N

a.s.=
p0

1− p0
,

where a.s. stands for almost sure convergence. Next we need to find the distribution of SN0 = 1
N−N0

(Lk1(0) +

Lk2(0) + . . . + LkN0
(0)). N0

a.s.=
∑N

i=1 Xi is a Binomial distributed random variable with mean Np0 and variance
Np0(1− p0), and by central limit theorem, is equivalent in distribution to a Gaussian distribution of the same mean
and variance. We can hence bound the probability of it being greater than any fixed number N

′
,

Pr(N0 ≥ N
′
) = 1−Q

(
Np0 −N

′√
Np0(1− p0)

)

> 1− 1√
2π

√
Np0(1− p0)
Np0 −N ′ e

− 1
2

„
Np0−N

′
√

Np0(1−p0)

«2

lim
N→∞

Pr(N0 ≥ N
′
) > 1− lim

N→∞

1√
2π

√
p0(1− p0)√

N(p0 − N ′

N )
e
− 1

2

0@√
N(p0−

N
′

N
)√

p0(1−p0)

1A2

> 1,

3I(S) is the indicator function evaluating to one whenever the statement S is true, and evaluates to 0 otherwise.
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Figure 9: Plot of dcritical as a function of a0 and b0.

where Q(·) is the Gaussian tail distribution. Hence, with probability 1, N0 is a large number, we can make use of
the weak law of large numbers to state that

lim
N→∞

Lk1(0) + Lk2(0) + . . . + LkN0
(0)

N0

d= E(Lki) = µ0,

where d denotes convergence in distribution. Hence,

lim
N→∞

SN0 = lim
N→∞

1
N −N0

(Lk1(0) + Lk2(0) + . . . + LkN0
(0)) d=

p0

1− p0
µ0, ifµ0 < ∞

a constant number.
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